Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements

نویسندگان

  • Francisco Javier Baeza
  • Oscar Galao
  • Emilio Zornoza
  • Pedro Garcés
چکیده

In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete pr...

متن کامل

An Experimental Study on Static and Dynamic Strain Sensitivity of Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete p...

متن کامل

Electrical Impedance Tomographic Methods for Sensing Strain Fields and Crack Damage in Cementitious Structures

Cement-based composites (for example, concrete) are brittle materials that crack when loaded in tension. Current strategies for crack detection are primarily based upon visual inspection by an inspector; such approaches are labor-intensive and expensive. Direly needed are sensors that can be included within a structural health monitoring (SHM) system for automated quantification of crack damage...

متن کامل

Simulation of Highly Ductile Fiber - Reinforced Cement - Based Composite Components Under Cyclic Loading

Ductile fiber-reinforced cement-based composites (DFRCCs) are being investigated for new design as well as retrofitting of structures in seismic regions. DFRCC is highly ductile and is characterized by strain-hardening in tension to strains over 3% and by unique cyclic loading behavior. To accurately predict the structural performance of DFRCC components under cyclic and seismic loading, a robu...

متن کامل

Experimental Strengthening of the Two-way Reinforced Concrete Slabs with High Performance Fiber Reinforced Cement Composites Prefabricated Sheets

Reinforced concrete structures need to be strengthened and retrofitted for various reasons, including errors during design and/or construction, so in most cases strengthening of structural elements is much more economical than rebuilding the structure. Using HPFRCC with tensile stiffening behavior has been developed to strengthen the concrete structures over the recent few years. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013